基于信息增强的图神经网络学习方法研究在线阅读
会员

基于信息增强的图神经网络学习方法研究

王杰

计算机网络/人工智能· 8.1万字

更新时间:2025-01-15 15:39:11

最新章节:封底
开会员,本书免费读 >
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用;第3章针对图神经网络在节点聚合过程中面临的节点邻域混杂的问题,提出了一种基于混合阶的图神经网络模型;第4章针对图神经网络在节点交互过程中面临的全局结构信息缺失问题,提出了一种基于拓扑结构自适应的图神经网络模型;第5章针对自监督信息缺失且包含噪声的问题,提出了一种图结构与节点属性联合学习的变分图自编码器模型;第6章针对节点自监督信息贡献不做区分的问题,提出了一种基于注意力机制的图对比学习模型;第7章总结全书并对图神经网络可能的研究方向进行展望。本书可供从事人工智能、数据挖掘、机器学习及网络数据分析等相关领域的科研及工程人员参考,也可作为高等院校计算机、人工智能等专业本科生与研究生的学习参考书。
上架时间:2025-02-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
加书架
下载
听书

最新章节

查看全部 立即阅读
王杰
主页

同类热门书

最新上架