![Matlab在水资源优化与水库调度中的应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/610/38401610/b_38401610.jpg)
第1章 分解筛选法求解线性规划的概念和方法及多重解求解
1.1 分解筛选法思路、要点及示例
1.1.1 分解筛选法及有关概念
线性规划法经过多年的发展完善,已趋成熟,其中单纯形法最为著名,但是单纯形法属于指数型算法,因此求解效率不高,并存在着死循环等问题,分解筛选法应运而生。分解筛选法可把一个n维的LP问题分解成n个一维的子LP问题,由此筛选出通过最优解角点的有效约束,并把它看作等价于一个等式约束,利用这一思路和特性,可大大简化整个求解步骤,解决了单纯形法存在的一些问题,有更好的应用前景。
1.1.2 解题步骤
在解题时,使用分解筛选法的思路为:①若线性规划问题非空且有界,则其最优解必在其约束凸集的边界或某一角点上;②最优解所在之角点或相切之边界,其对应的起控制作用的诸约束条件此时必然恰好满足,从而具有等式约束的特性,可用这样的等式通过消元法使问题连续降维;③当多次降维把一个n维的LP问题分解为n个一维子问题时,就可以使用约束超平面在各子问题坐标轴上的截点的概念,来求得这些子问题各自的独立“最优解”,称初优解Z初i,然后选出此n个初优解中最大者(对求最大问题而言)Z初max。可以证明,此最大初优解所对应的子问题和约束方程,就指出了系统最优角点所通过的那些约束之一。一旦找出了这种约束就可如②中所述使问题连续降维;可将步骤重复进行,直至问题降为一维方停止降维,或筛选完了全部m个约束后,即可通过回代求得最后解答。
为了便于说明和具体理解上述思路和步骤,借助算例来阐述,以加深理解。设有一个三维线性规划问题如下例。
例1-1
求:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0002.jpg?sign=1738987453-rXV91IuCQVkWrIM4qBAHEthJprb6njD6-0-8b92925cd3d617e7813c76621d0424c0)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0003.jpg?sign=1738987453-V13Z7vi4mDUNaawtY9vNNUQ9GmnflOd9-0-99157b758eae11d3ac47f8c443a40711)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0004.jpg?sign=1738987453-BvtdpCYOaXQfreG5APEKhMLiNWL3q3Mh-0-75c7d2382fe9e4680b1c9d417dd8cde9)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0005.jpg?sign=1738987453-PyhCsHoKt4spY0h5Zi5qXCMI3RELNXrM-0-11700ce6ae4d3cbad148b8f92657f87d)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0006.jpg?sign=1738987453-9n7Rc6TfVtZAByudKeHvED5KoGyfXdiw-0-70bac94bda0123b563801fcf1f9338f1)
对于此题应先进行一维分解,把此三维问题分解为x1、x2、x3三个一维子问题,并求各子问题之初优解Z初i。为方便和明晰解题思路,解题步骤可以通过列表进行,如表1-1所示。在表1-1含ci的行中,1、2、3为各目标函数式变量的系数,如式(1-1)所列。
表1-1 分解筛选截点IT与Z初计算值
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0007.jpg?sign=1738987453-Du3E0qCCgiv6VBhxU2HfqSKO04RlEu6n-0-99af5b95f86d562a5e8a87966f5e0ae0)
注:∗表示xi列中的最小值,∗∗表示Z初i行中的最大值。
对于每一个子问题,例如对x1子问题,先分别求约束方程(即约束平面)[式(1-2)、式(1-3)、式(1-4)]在x1轴上的截点,此截点是令式(1-2)~式(1-4)中除x1以外的变量均为零时得出的,其表达式为:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0008.jpg?sign=1738987453-yPLoaN8bRd6twmNUWFLtkvx6gZWTVEKj-0-4a8d034d263fed2df94695670a12e4c0)
式中,ITji为第j约束线在第i个变量轴(即xi轴)上的截点值;aji为约束条件式的系数;bj为各约束式右端的常数项;j、i为约束条件和变量的序号。
然后,选xi列诸小于或等于截点值ITji中的最小者(表1-1中数值带∗者),对x1轴而言就是6和其对应的约束式(1-3)。再将此最小截点值6乘以目标函数的对应系数c1得第一子LP问题的初优解Z初1,即Z初1=c1ITjimin。一般有:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0009.jpg?sign=1738987453-7LR9arF3zCb2JUyCU7aeqaG7O4f9gBOd-0-1f14695b16719c1b1219262354e39c39)
由于Z初3=18为表1-1中最大的Z初i,相应的变量为x3,式(1-4)为约束条件,由此可知,全系统的最优解必通过此约束平面式(1-4)。下一步是将式(1-4)看作等式,进而解出x3:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0010.jpg?sign=1738987453-ygJApG8VZHK52SERgWYKo7j1JslT976y-0-3cda262d61de22ed079472d8d6d7f15e)
然后将式(1-8)代入目标函数式和其他约束方程,这样就得到一个降维后的新LP模型:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0011.jpg?sign=1738987453-Qij2xD7vXebWEr5VYUgI7NIuQXtUanPt-0-2784430d09868ad3b5e16ae2a8286c26)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0012.jpg?sign=1738987453-6QVpZ7LrXXqTjKDB5ig3QGZsgf5KQ7BI-0-882149331e0e507a887716f5538539c2)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0013.jpg?sign=1738987453-bKxo6hhHL66d8xZho01rIO99EEPZN56y-0-db9d52fae3fb8461f02d04a9e05826d1)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0014.jpg?sign=1738987453-9ReI2DgGWyZx6VpDrgM6YB5Fq56ozZDp-0-422186be272599b5d5326ab268f1bc64)
该模型与前一个一样,它可再次做一维分解筛选。不过对于目前这一类型,由于为负,且属于退化Ⅰ的情况,故解是简单的,即有
=0,从而又有:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0017.jpg?sign=1738987453-CDD9X058Jzjp5W0WnVcacuGGCAY9kpSG-0-9687c4fd773a35f80557fa14e22b2464)
把它们回代至式(1-8)中,得,而最优解为:
(x1,x2,x3)∗=(2,0,6),Z∗=20
解毕。
分解筛选法解题流程图如下:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0014_0019.jpg?sign=1738987453-NYShZOgBHaYtxQsYleuBoAA16kyylYOF-0-343503564a893a04971afc7bd5647373)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0014_0020.jpg?sign=1738987453-5MgnujC2uvAfEh3mMYZig4fmjHqr09G6-0-3a9303b0edfb9f6926afa7a2281cc18e)
若计算时Z初max同时出现在两个以上的列中,则把不同行的相应约束方程都可看成是等式约束,进而可以联解消元。这样,明显可使计算效率提高,简化计算。
例1-2
求:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0021.jpg?sign=1738987453-S8kufAfJ7hLZxsoOF8t4grfMrzu3Hh40-0-101c099406f408703d01280542b6b171)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0022.jpg?sign=1738987453-WwPO8emUT88ynWdxv5TMMq9wNlq0xHWx-0-a841f8fc46f47727a18f680a034bf771)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0023.jpg?sign=1738987453-OxhW9RTeJn8vANMHLYsu7iHPEfpGq9nf-0-06a9e1981156aa1240b090ba23c52190)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0024.jpg?sign=1738987453-nVm1JaDr54yO7qJ17Qs0cFbdeY67nCl6-0-8981b2f360e44b5fd542f72a76f119ce)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0025.jpg?sign=1738987453-0x3i3R2J7PRKLQQ89stNGziXx2xD5eQ7-0-eab7efbf049ae89a8688b1e0b1c5182b)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0026.jpg?sign=1738987453-Koc5rnBRHUkRMsyisQgPf2wCOvkIy3sk-0-acce648ae13f9dfa8d9d9f2b65b97bc8)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0027.jpg?sign=1738987453-oKdua86cx0W2VE2lMjIo2WaUWH6Mdqeo-0-b32c27d9ac00d1f7181ed786a6697c7b)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0028.jpg?sign=1738987453-O1LQGBzPgMnaS0UFPW4CYArb1CMAoG6T-0-9477923f4cece02318c3fe0b7e5b051c)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0029.jpg?sign=1738987453-dq0euNgSeE3ShBrJHRWF7k3FtiN6FgZy-0-f3b110f14a58e1f73ed102478d542a83)
在对上面所列九维LP问题进行分解之前,可简单判别出变量x9属于退化Ⅰ(即c9<0,Aj9≥0,j=1,…,9)。故有,并可先行从模型中剔除有x9的项。然后再次分解此八维LP模型,并一一列出所有一维子模型截点值的计算,如表1-2所示。
表1-2 分解筛选法——ITi及Z初i计算
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0016_0031.jpg?sign=1738987453-Dl64rqxR0nRn8HBhM6sFd3woGofGS2tv-0-fcf06899d79a86924dd34bc6f95df11b)
注:右上角有√为该列的最小截点值。
在计算截点值时,凡是约束式中系数为负的部分,不需要计算,因其已不在第一象限,系数为零者,只需要取每列中的最小截值点,故也不必列出。
在表1-2中,Z初max为+0,它同时出现在x2、x3、x5、x6四个子问题中。由此可知,全系统的最优解通过四个相应的约束式[式(1-15)、式(1-16)、式(1-17)、式(1-18)]。把上述四个方程式作为等式联立,通过解出上述的四个变量,可得出下列结果:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0016_0032.jpg?sign=1738987453-HTEScx59dquyxijAG2yj98V9FUbwrrnK-0-3c867059a23abd3fa06d8b5658d57852)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0016_0033.jpg?sign=1738987453-vHRTihNdu4dkdIDWlCFhClNun8qQFiaf-0-79d5bcc147f3bc504858d6701cd8882b)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0016_0034.jpg?sign=1738987453-rEE8Oi75j3TIzrOCxljO5HjRhYarvH58-0-043f8d0b9c339fb0a83702ea00867c10)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0016_0035.jpg?sign=1738987453-IDN7U5EakmlzmdKgs6G1KL6FUtIk6cyC-0-f33e047891015025871ab312471d387f)
把式[1-23(a)]、式[1-23(b)]、式[1-23(c)]、式[1-23(d)]代入目标函数式(1-14)、式(1-19)和式(1-21)。由于式[1-23(a)]、式[1-23(b)]、式[1-23(c)]、式[1-23(d)]都只是单变量之间的比例关系,可使式(1-22)必然满足,不需要再次代入引进有关于xi≥0的新约束。于是可得降维后的新LP模型:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0036.jpg?sign=1738987453-gBbHn0MO68QWmCwTFGB9Bw01y4CEfyHl-0-2a4d003493bd6eebae31dc31d2312e88)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0037.jpg?sign=1738987453-DSuzAC5DJ55HBdDyrIIeHG1hdOoEb1LG-0-cdf2c2f921e6bbc5475007e5a36c9ce4)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0038.jpg?sign=1738987453-XnC3D8nXGkS22XuBnf0FsMsMszhkcq1l-0-e9dd849b198bc18d319147222286bc3b)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0039.jpg?sign=1738987453-avj5OkfkvtZWh7AqVjPkQpTPkJ0i5406-0-3c90acd5a8a9cf3790b0aa696f29a502)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0040.jpg?sign=1738987453-ZEKZH6hBr0UulEi6Lo8UPtGRsFbgcIZ7-0-c3161e5a28d61a0d45276e887d35b217)
在上述式中变量x4属于退化Ⅰ条件,故,并可将其在LP模型中剔除。对于新的LP,再次做一维分解筛选表(见表1-3)。
表1-3 一维分解筛选表
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0042.jpg?sign=1738987453-bWcsw0jJrSZPNtB2esdh5cdNEnGnDChY-0-173028e32154a5252fa202cbfd3ea5f2)
注:右上角有√者为该列的最小截点值。
通过表1-3可得Z初max=500相应的变量为x1,约束式为式(1-19),于是可由式(1-19)解出x1:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0043.jpg?sign=1738987453-aa6TJ81dBvM8DMKbOom1i1xRpQj84XuR-0-925ab4abd47fec00afb57e66824c2e5d)
再把式(1-19)′代入式(1-14)′、式(1-20)′、式(1-21)′,可得第二次降维后的新LP模型:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0044.jpg?sign=1738987453-TZiGXHqqCRWi3GvhexsQUnuG1GhCcdIU-0-60dd6d1c61995dd68affe5179cb1d1ac)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0045.jpg?sign=1738987453-23qy0SlvPYo1gGgAFfe3R1e0DbP2j1ge-0-7552927543edf2b2f334c905755833f5)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0046.jpg?sign=1738987453-f5hKKTxPJOjVEYjOpfKgwtkar04YqTCQ-0-386e0aa4b7c15e07cc5ffa54d929e7f0)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0047.jpg?sign=1738987453-FxoOXMEi5QiKACLmOplM5h6j59jCROyL-0-a94c0452be01c3ad6e5a6bcd7b8bb3b6)
在上面的新LP模型中,x7符合退化Ⅰ的情况,可知以及x8≤50,在目标式中已无任何未解变量,再将
的值回代到式(1-19)以及式[1-23(a)]、式[1-23(b)]、式[1-23(c)]、式[1-23(d)]和式(1-14)″,可得:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0018_0050.jpg?sign=1738987453-8rsGDTnzbHPHpeWNlxo5toxLQKuojxe3-0-43179fdb7bc7c1a629306227d88f03ac)
至此解毕。
分解筛选法解题流程图如下:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0018_0051.jpg?sign=1738987453-lerUL7GpkHWORTtt7QeQwEmxWcCzOYs9-0-e160c704692775ff9035c297f06a0dbd)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0019_0052.jpg?sign=1738987453-sKs0yP9Acn0p1AaoqqD8vPKmrFpB19UE-0-2a1fe5d20a92ef13e1fff5ba5ffd22e3)