![高等数学(上册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/472/32164472/b_32164472.jpg)
1.6 极限存在准则和两个重要极限
本节我们介绍极限存在的两个准则——夹逼准则和单调有界收敛准则,并由此得到两个重要极限.
定理1.6.1(夹逼准则) 设数列{xn},{yn},{zn}满足以下条件:
(1)从某项起,即∃n0∈N+,当n>n0时,有yn≤xn≤zn;
(2),
则数列{xn}的极限存在,且.
证 由则根据数列极限的定义,对∀ε>0,存在正整数N1,当n>N1时,总有
|yn-A|<ε,
即
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-042-10.jpg?sign=1739013906-PZrQE30v8cGtgpKZbUYnE2u83HmSq3a2-0-12d86c167d4b09519fbf158b07b6aae5)
同理,由则对上述ε,存在正整数N2,当n>N2时,总有
|zn-A|<ε,
即
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-042-11.jpg?sign=1739013906-O1sENGxkkWVzVzwv7xv4KgPy7NdpjZ5v-0-184883c017695f181247e2e49baa0b9c)
取N=max{N0,N1,N2},当时,条件(1)和式(1.6.1)、式(1.6.2)同时成立,则
A-ε≤yn≤xn≤zn≤A+ε,
所以数列{xn}的极限存在,且.
夹逼准则对于函数极限也成立,即设在自变量x的同一个极限过程下,f(x),g(x)和h(x)满足以下条件:
(1)g(x)≤f(x)≤h(x);(2)limg(x)=A,lim h(x)=A,则lim f(x)=A.
例1.6.1 求.
解 由于,所以
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-02.jpg?sign=1739013906-hozT4xQgt24Q6VsYGRbu6UNESY18IVl9-0-968f451ec23d8fa92cdab40dadbd6ab4)
而
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-03.jpg?sign=1739013906-HkFeRg8EWRmgR9kOpZTGS4PVEEfabDiQ-0-36b8fd756a8f2d02feba2a9a3470cc4c)
由夹逼准则知
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-04.jpg?sign=1739013906-8hQFBEbNa9ueoOBXO54ilCXz0qByIT0n-0-80b5bfd0e649c059855735f6ab11b498)
作为夹逼准则的应用,下面介绍第一重要极限:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-05.jpg?sign=1739013906-uie8i7ZJzuMfSDmHnqL5qSPK15OFf9Qg-0-0a7908e98f3a2a1275ed7f3a067ff093)
证 首先注意到,函数对于一切x≠0都有定义. 作单位圆如图1-6-1,设∠AOB=x(弧度),过A作圆的切线与OB的延长线交于P,过B作OA的垂线交OA于C,从图1-6-1容易看出,△OAB的面积<扇形△OAB的面积<△OAP的面积,而
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-07.jpg?sign=1739013906-XhPKVOv0jvUTDPjPTvA7Ib6gwWrLYJiH-0-c51566bf4f6098e03347d08038047290)
故有
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-08.jpg?sign=1739013906-WVJOtpHPeBm1gtMNRO7FMx3Fg4sjskPh-0-de762df72a8a937a8a222d3c89499d58)
当时,上式各项同除以
,有
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-11.jpg?sign=1739013906-T91vyI4PToeApqheSfuyg0p8BTknUXKJ-0-5a3c49eea1f5017f3773c4c1515e2e32)
即
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-12.jpg?sign=1739013906-gGNXs2yXAeo5imzdgOg3IhPZEHZbfxOV-0-d6d7b2bafb2265164639e2eb7ceb0f92)
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-13.jpg?sign=1739013906-sxXCsfvwyaJUHOCDBBKtHyTRPtqVcqj4-0-ac6f9f6a0312b3d0d79d5d6bfa7b5b74)
图1-6-1
当时,由于cos(-x)=cos x,
,式(1.6.3)也成立.
因此,由和夹逼准则,有
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-17.jpg?sign=1739013906-S2Ut86Fjj279pnAOfJMVgs4vbx2ZVFGC-0-bc8bd681822d09ae609f28cde3137740)
例1.6.2 计算极限.
解
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-02.jpg?sign=1739013906-Ozl3hFhbVolpQidZt9UAsgN2sOVeQbYp-0-82470d5d8a7bcd270b0236e840e81cd4)
令t=kx,则当x→0时,t→0,所以
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-03.jpg?sign=1739013906-2o8y0qM0w4L8rl3Yw316GWOdEojnxyU2-0-463488bca8df44c1d1fea15c6d42af25)
例1.6.3 计算极限.
解
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-05.jpg?sign=1739013906-iVuxOC3tjteq3AVhkYzgufcslvyUTYCX-0-162df657c13bf79248cc489859e675f9)
例1.6.4 计算极限.
解 由于
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-08.jpg?sign=1739013906-ouKZqOIuHzjjycpm4GIcBdd01qWv64WO-0-d4c5cfb8afc2f3cbd9731e6dec03b851)
令,则当x→0时,t→0,所以
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-09.jpg?sign=1739013906-tILr1HYDDqirc8hMB9ljr8LgVhCPsLAt-0-bf68b9004bd3929fd14ec14790ae04e4)
一般地,设α(x)是自变量x某一变化过程中的无穷小,即lim α(x)=0,且α(x)≠0,则在同一极限过程中,
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-10.jpg?sign=1739013906-1jGOjwCKVy4Fxk6NRXTTwK7LmBb8KCc0-0-a2bcc149d8d59b130dc4f4256fbf8cea)
例1.6.5 计算极限.
解
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-12.jpg?sign=1739013906-xayjAs3fldelaVZffTSxgCFzxdMB6KfI-0-1cd3b03ae11a7f8cdd67d544d4f241fe)
定理1.6.2(单调有界收敛准则) 单调有界的数列必收敛. 即给定数列{xn},若有
x1≤x2≤…≤xn≤…(单调增加)
或者
x1≥x2≥…≥xn≥…(单调减少),
且对一切n,有|xn|≤M(有界),则数列{xn}必收敛.
由定理1.2.2知:收敛的数列必有界,但有界的数列未必收敛. 现在单调有界收敛准则表明:如果数列不仅收敛,而且是单调的,那么该数列一定收敛.
单调有界收敛准则的几何解释:单调增加数列的点只可能向右一个方向移动,或者无限向右移动,或者无限趋近于某一个定点A,而对有界数列只可能发生后一种情况. 单调减少数列情况类似.
使用单调有界收敛准则时,我们通常考虑下列两种特殊情况.
推论1.6.1 如果数列{xn}单调增加且有上界,则{xn}必收敛.
推论1.6.2 如果数列{xn}单调减少且有下界,则{xn}必收敛.
例1.6.6 设数列{xn}满足存在,并求其极限.
解 由题意知0≤xn≤1,n=1,2,…,因此数列{xn}为有界数列. 又
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-02.jpg?sign=1739013906-gdd3f4Yy1BZQ3iq6zFvlPGYRxH7G0kwA-0-27eab52b14f365c2130d51ea4a38d00d)
即
xn+1≤xn,n=1,2,…,
所以数列{xn}为单调减少,由推论1.6.2知存在.
设,在等式
两边同时令n→∞,并注意到
从而有
A=A2,
解得A=0,A=1. 又因为0≤A≤x1<1所以A=1舍去,故A=0.
下面介绍第二重要极限:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-07.jpg?sign=1739013906-5Qk019QU2q4nmByQ9xqvYjiUNIKTMz2G-0-931225e1b955b82038f6c5d09625b831)
先讨论数列极限的情形:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-08.jpg?sign=1739013906-4cHiANnsBCfMRBr7QDK17LP9sqJvoBma-0-72b6de6fcea546dce6b319586d8a9526)
我们只需要证明数列是单调增加且有上界的即可.
结论1.1.3已经给出了下列不等式:对任意n个正数a1,a2,…,an时,有
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-10.jpg?sign=1739013906-bwSLLwzVxcFHnogLBDLSYMBWwKZYfq02-0-285c79e50816d491a338d0a7679b21ab)
且等式成立当且仅当a1,a2,…,an全部相等. 上式即为
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-11.jpg?sign=1739013906-SxILKkXKNAhacKSAAqxcfFdwOUzRCSA4-0-fde2da3f6d90efaef12a4d57643d4f59)
(单调性)
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-12.jpg?sign=1739013906-NoI38rc6wbYaEHScdOqUk03khLSekGCP-0-83f008ea07867714a97d990b8bb287f7)
由式(1.6.4)
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-13.jpg?sign=1739013906-uYgsuMEKyWSIfmEso0OoOvwg95IZoyKp-0-ba764012740c2ffac0f9850ce782d0a5)
所以数列是单调增加的.
(有界性)
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-01.jpg?sign=1739013906-Ps1sTImflHeabIevgTfjR0tSY07f8X8w-0-442e1461d8363efe50e1051449dbd488)
即得
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-02.jpg?sign=1739013906-BLpkZOp1L921lXKLHSxVgBKE9rMbUiIp-0-6a7431cca1a78ba36b1d8f10c4ab4573)
由单调性知
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-03.jpg?sign=1739013906-7jXsvTFSX1Vp5pO9BLKeSdu9CqehCEpS-0-0b7725a3891cb74a0be716f097452606)
所以对任意的n均有
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-04.jpg?sign=1739013906-Py8r1RXuhTJQK8j8RER8QCcUK8g8RRQH-0-1a408f882c71880ce328214aa5ebc548)
即数列有上界.
由推论1.6.1,数列收敛,即数列极限存在,用字母e来表示. 可以证明e是一个无理数,其值为
e=2.718281828459045….
即
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-07.jpg?sign=1739013906-Vzn6nSfG0m1w9seNAHNCwsD3IaUcKI1N-0-11e3fff9d1609b3db09bc03b5e92ef8a)
进一步可以通过夹逼准则及变量代换证明
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-08.jpg?sign=1739013906-CRwDAT6KreXbBeRMj9NILaZT6cxcD7B4-0-6f84cf6cc4382a7b049ad148498b8b93)
指数函数y=ex以及自然对数y=ln x中的底e即为这个常数.
若在,则当x→∞时t→0,故
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-10.jpg?sign=1739013906-GfpN4JaKiVHkJxeF7xUgom5WQCoTUihz-0-eaa76ad10026e28dc927d690174428ec)
所以,第二重要极限也可以变形为
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-11.jpg?sign=1739013906-VftwYR7MX4pHRhlyGAie1GBXlJnFpWjz-0-21a1d37eb9c4b4739eaf5f846e6bc996)
例1.6.7 计算极限.
解 令t=3x,则当x→0时,t→0,所以
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-01.jpg?sign=1739013906-zCWgivP8VYo7CZLgsxzkXQehDEGIoi8X-0-16313bbc72627b5dbec7ad9644f0ff9a)
例1.6.8 计算极限.
解
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-03.jpg?sign=1739013906-LN1gJXaLT1BDUWeEd4atW9PnzFwQNMtE-0-31c69795d7b98799b04d5a22b49b6944)
例1.6.9 计算极限.
解 令,当x→∞时,t→∞,则
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-06.jpg?sign=1739013906-x0jNS31aeW0rL5L2qwSW0Sq7v4gwY6Sw-0-b9401003de5e43ad7340e192da547878)
一般地,设α(x)是自变量x某一变化过程中的无穷小,即lim α(x)=0,则
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-07.jpg?sign=1739013906-UHpnNp7PlqBbhwlZwNW85cxSR3sbCuCh-0-8c291ca56eac9ae8fc1ffade0ae8e1ec)
注意第二类重要极限的特点:函数是幂指函数,底数为两项之和,其中第一项为1,第二项的极限为0,指数与第二项互为倒数. 这样的极限值都是e.
例1.6.9的解题过程也可以简写成
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-08.jpg?sign=1739013906-Vikse0tfBmO9m0hUtx5HDTUKqg3CJCCe-0-83fe4b237bb1268b8eb22acc8ce5347c)
例1.6.10 计算极限.
解
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-10.jpg?sign=1739013906-mDMzF11zILIwufh1vw73uyoavFhMWYS9-0-d1f8f3aa455e8560de6514342c8099c0)
习题1-6
1. 利用极限存在的准则证明:
(1);
(2)数列的极限存在.
2. 求下列极限:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-13.jpg?sign=1739013906-bkpEnsIfVGwmbQ27KSb5rx66uOrKgFZ2-0-1d55e7b60e79ed8e6e5996a176f006cd)
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-048-01.jpg?sign=1739013906-8EQ5z6b6t73R47TdODrAvkl8DgEJodoF-0-f384fe3666de29d1affdb1272eb47059)
3. 求下列极限:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-048-02.jpg?sign=1739013906-5LOqJ5TgvvHgfD1S2J5tb7g3QNZpKlAZ-0-acd5941a7fb9d60757a43e83706f9810)
4. 求下列极限:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-048-03.jpg?sign=1739013906-nftCEByl3JQCQ742DH2NVuLZQMpeoq0C-0-bbabb3ad9fe7bb130dbd660df5664693)