
会员
AI助理:用ChatGPT轻松搞定工作
杜雨 刁盛鑫更新时间:2024-06-19 17:36:56
最新章节:第3节 AIAgent开会员,本书免费读 >
未来必将是一个人人拥有AI助理的时代,提前了解、掌握AI工具的使用方法,我们就会在竞争中领先半个身位。本书结合ChatGPT等已发布的AI工具,从文字处理、绘画、PPT制作、数据分析、翻译等多个应用场景切入,详尽介绍了如何用这些工具来提升工作效率。不管你是职场新人,还是经验丰富的老手,都可以用本书所讲的方法来武装自己,变身“职场钢铁侠”,更好地胜任工作需要,更具有创造力和竞争力。
品牌:人邮图书
上架时间:2024-04-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
杜雨 刁盛鑫
主页
最新上架
- 会员
设计深度学习系统
本书主要从软件开发者的角度探讨如何构建和设计深度学习系统。作者首先描述一个典型的深度学习系统的整体,包括其主要组件以及它们之间的连接方式,然后在各个单独的章节中深入探讨这些主要组件。对于具体介绍的章节,会在开始时讨论需求,接着介绍设计原则和示例服务/代码,并评估开源解决方案。通过阅读本书,读者将能够了解深度学习系统的工作原理,以及如何开发每个组件。本书的主要读者对象是想要从事深度学习平台工作或将一计算机18.1万字 大模型垂直领域低算力迁移:微调、部署与优化
本书是一本深度探讨大模型在低算力环境下实现迁移与微调的实践指南,并深入讲解了大模型的部署与优化策略。书中结合多个垂直领域的应用场景,从理论到技术实现,全程详尽讲解了如何应对大模型在行业落地中的技术挑战,帮助读者逐步掌握大模型的迁移与微调核心技术。无论你是大模型开发者、人工智能研究人员,还是对垂直领域AI应用感兴趣的行业专家,本书都将带你深入大模型的核心领域,提供从构建、优化到部署的全流程指导,助你计算机13.7万字- 会员
AI提示工程实战:从零开始利用提示工程学习应用大语言模型
本书介绍提示工程的基本概念和实践,旨在帮助读者了解如何构建高质量的提示内容。内容包括:认识大语言模型、ChatGPT应用体验、ChatGPTAPI、PythonChatGPTAPI库、提示工程、提示类型、基于提示工程应用Python数据分析等。计算机14万字 - 会员
AI高效工作一本通
本书共九章,分别介绍AI写作工具、AI优化简历、职场入门AI写作、AI项目策划、AI项目复盘、AI高效办公、AI高效沟通、让职场更轻松的软件和AI职场视频剪辑等内容。计算机10.1万字 - 会员
中国人形机器人创新发展报告2025
作为一本技术性很强的书,《中国人形机器人创新发展报告2025》覆盖人工智能、大模型、视觉捕捉、自动化控制等一些列技术和学科。本书系统性梳理了《人形机器人创新发展指导意见》发布以来中国人形机器人产业在关键技术、产品培育、场景应用、生态营造、支撑能力以及保障措施等多方面的发展态势,通过多角度案例研究,全面解析了中国在这一领域的成果与经验,力图展示中国人形机器人产业的全貌,洞察人形机器人产业未来发展的新计算机9万字 - 会员
硅基物语·AI大爆炸:ChatGPT→AIGC→GPT-X→AGI进化→魔法时代→人类未来
本书以第一人称视角,讲述AI的来龙去脉,表达AI的技术原理。从历史到未来,跨越百年时空;从理论到实践,解读AI大爆炸;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。ChatGPT的诞生,引发了奇点降临,点亮了AGI(通用人工智能),并涉及大模型、深度神经网络、Transformer、AIGC、涌现效应等一系列技术前沿。计算机8.6万字 - 会员
《机器学习》习题参考
本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字 - 会员
贝叶斯算法与机器学习
本书共分为10章,涵盖了贝叶斯概率、概率估计、贝叶斯分类、随机场、参数估计、机器学习、深度学习、贝叶斯网络、动态贝叶斯网络、贝叶斯深度学习等。本书涉及的应用领域包含机器学习、图像处理、语音识别、语义分析等。计算机0字 - 会员
人工智能数学基础与Python机器学习实战
本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle计算机0字